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Abstract

The case study assigned to undergraduate teams included two objectives. The first was to determine the expected service radius of the WatchMate buoy if it was initially
charted off the west coast of Vancouver Island. The second was to determine the forces in the cable assembly during a 100-year storm event. All ocean analysis was
conducted in ProteusDS. The maximum watch radius of the WatchMate buoy was determined to be 38.54 meters in the winter, and 23.33 meters in the summer. The 100-
year storm event caused a maximum tension of 1603.35 newtons in the bridle and 2060.78 N in the studless chain.
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A bridal, studless chain, five segments of Amsteel rope, and an offshore chain comprise the
mooring assembly. Along the mooring there are also three trawl floats and one line mass. The
layout and numbering scheme for these cables is seen in the left below.
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The safety factors for each mooring material

. Conclusion
The steps to model the mooring the Proteus were: T son0 | 4 ) ,
. g - ‘ 9/16" Amsteel Rope max tension: 1,603.35N
* Resting draft of the buoy was found ; ggm’ { | 9/16" Amsteel Rope min strength [8]:  161.700N A location off the coast of Hot Springs Cove was selected to analyze the watch radius in typical
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» Cable start and end points were selected and calculated operating conditions and the 100-year storm event survivability of the WatchMate buoy. It was

determined that the buoy would operate within a 23-to-39-meter radius during typical
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« Point masses were used to represent trawl floats and line mass

[
o
T

—r——
_—
.
—

I
m‘l[”"d |

3/4" Studless Chain max tension: 2 060.78N environmental conditions and depending on the season. The studless chain experienced the
highest percentage of maximum rated force. The mooring assembly was found to be properly
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« Point masses were used for shackles and swivels at connections
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T soo} 4 \Ar/ 3/4" Studless Chain proof load [8]: 160,818N .
« Aninitial one-minute sim was run to allowing the mooring to settle (see middle image) ) v designed for a 100-year storm event.
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Another interesting observation from the graphs is that summer curve is much
smoother, this is because the waves and wind are much smaller and therefore allow
the buoy to settle much smoother. The overall watch radius for the different seasons
are as follows:
Typical Watch Radii
Summer 2333 m
Winter 3854 m

. (accessed
Aug. 2, 2023).
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