University of Victoria
Faculty of Engineering
MECH 410
Fall 2023

MECH 458

University
of Victoria

Project Report

Created By:

Colm Molder
V00937879
Blaine Tubungbanua

V00918128

Table of Contents

1 Project Introduction
2 System Technical Information
2.1 High Level Function Diagram
2.2 Circuit Diagram
2.3 System Algorithm
3 System Performance Specifications
3.1 Recommended Operating Parameters
3.2 Maximum Operating Parameters
4 Testing and Calibration Procedures
5 Limitations and System Tradeoffs
6 Experience and Recommendations
7 Conclusion
References
Appendices
A Final System Photo
B System Code

List of Figures

Figure 1: Mechatronic Sorting System [1]
Figure 2: Block Diagram

Figure 3: Circuit Diagram

Figure 4: End Detector Angle

Figure 5: Stepper Acceleration Profile
Figure 6: ADC Ranges

Figure 7: Final System

List of Tables

Table 1: Sensor Types
Table 2: Six Finite State Machine States

Table 3: Recommended Operating Parameters

Table 4: Maximum Operating Parameters

AN AW WN

11

12
13
16
17
18
19
20
20
21

14
15
16
20

12
13

1 Project Introduction

The MECH 458 project is centred around the development of a mechatronic sorting system using
C programming on an ATmega2560. The ATmega2560 is an 8 bit micro controller with 256KB
of Flash program memory [1]. The microcontroller features 12 channel 16-bit resolution PWM
channels and A/D-converter as well as a 16 Mhz crystal system clock. All these features are

critical to the project.

The microcontroller will be used to control a mechatronic conveyor belt sorting system seen

below in Figure 1.

Figure 1: Mechatronic Sorting System [1]

The system features a ferromagnetic sensor (which is not required for this project), a
reflectometer sensor, a laser optical sensor at each of these, and an end of travel optical sensor.
The conveyor belt is controlled by a DC motor and the end bucket is rotated by a stepper motor.

The stepper motor position is homed through a sensor on the bucket.

The assignment is to sort 40 objects into separate bins. These objects are either white plastic,
black plastic, steel, or aluminium. The performance of the system is determined by the number of

correct sorts (N¢), number of errors (Ni) and time to sort all 40 (T).

Beyond sorting, the system must also make use of one push button to pause and resume the

system and another push button to ramp down (sort the remaining items on the belt then stop).

Based off the project background discussion above and discussions with the Lab Technician

Patrick, several objectives were identified:

1. System must sort 48 objects in under 60 seconds

2. System must make no more than 1 error

3. System must have pause functionality and display the number of each sorted
material/colour and the number of objects still on the belt

4. System must have ramp down functionality and display the number of each sorted
material/colour

5. System must aim to maximise SPI score

6. System wiring must be clean and easy to track

7. System coding must be clean and well laid out and commented

2 System Technical Information

2.1 High Level Function Diagram

A High level function diagram is shown in Figure 2. A detailed description of each sub-process

block is described in section 2.3.

Initial State

Bucket Stage

View Linked List,
and determine
distance

Distance=50
Distance=-50
Distance=100
Distance=-100

¢ Distance=100

Stepper 50
steps CW
Stepper 50
steps CCW
Stepper 100
steps CW
Stepper 100

Belt Off

steps CCW

Deque

item
from list

Polling Stage

Reflective Optical
Interrupt

End Detector Hit

Reflective Stage

ADC Complete
Flag

Perform

Ramp down
enabled

Ramp
Timer++

ADC

Reflective
Optical Sensor
Off

Characterize

Pause Interrupt

Pause Interrupt

Ramp Down

Timer Done
Ramp Dowin
Intarrupt

material, Save
in linked list

2.2 Circuit Diagram

Stops all v
Processes Start Ramp

End Timer Count

v
Belt Off +
wait

Pause Ramp down

Figure 2: Block Diagram

The circuit diagram for the system is shown in Figure 3. At the centre is the ATMega 2560

Microcontroller, connected to 4 sensors, 2 actuators, 2 buttons, along with LED and LCD

displays. Not included in the circuit diagrams are 47K<Q resistors wired in series with the exit

sensor and the reflectance detector, acting as low-pass filters, to eliminate false triggers caused

by electrical noise generated by the brushed DC motor.

T T 7 H E] 5 5
"""""""" b Semsar 1T TThuttens 4
+E¢ | +5Y | Lz98HK
| H L M1t
i 1 (L} M1
A i i ENL M2+ n
: ; L2 w1
; ! : e @ Stapper_Motar_bipalar
! I 1 EHD
| o i +12¥ &—— Mpur
! g{a’ L Meur-
30 ey gy NS
PatL
H oLy pazid H
pAs[2a
Hlataz pas 72
pas |3
98 72 p
0 ppEF Fag e
FNYL WNHIZ5P30
35 19
BLD BB EN/DIAR
)
K;&K,‘ ;5 1 PBL g EN//Difd Motar_bC
s
5 T 8]0 i - ouTa |2 E H
= ouTs 2L
1 Apy PB4 e Pk
Alipig PE5 (2 LI] Hpwre FET ByP 2
450 Alipig pos 21. T Mawi- =
Allpiy PBT T LCD-D16NDOZL = +12V & SVlog 2
3
AR Ty
ey
eIy ForE] B o <2l
=4 Fk1l PC1 Ly
il 55 LAl DET
3 Alipgz PL. 13 1
] a5 56 Ll DE| S
288 i
o PES P B 4
= B3y pey Sl T4 11 =
S ab 58 A
~ oAiipys P
a3 50 [l A0pgs
jerapeid i itz sz
= Alipy7 PCT =) i Llpe1
iy po 3 } 4]0
Blipy P01 o] o
oL Poz L i
A p3 PE3 PAUSE L8]
. peTiryn ROk 4T Rl s i
Alips Pos . 1]4es
i Foese S
Lhpry = i
Amyo FED e
454 48v A ipyy PELFE-
Allpyz pPeztite
aslos i
%PH'» ps!.
L i PES T L
3 AL pHe =
o ¢R] B «ZLpHT PETHEs
51 57
< 3 oAlipge pro 3T
0 @ 2
= = Tlipgz pr223s
+20ipz pr3 |3
=28 ipgy PRy s
= PFS% Sheet: /
Freril. e . . "
E a P30 File: Mechatronics Praject Schematic.kicad_sch °
1 1 5 Thtle: Mechatronlca Profect Schamath
77777 ElN Size: A4 [Date: 2023-11-17 [Rev:
#Tmeqa2560—1 64 KiCad E.0-h. eeschema (6.0.8) [1d: 171
T F £l S T 5 T s

Figure 3: Circuit Diagram

With the exception of the reflectance sensor and hall effect sensor, each sensor is either a pull-up
or pull-down signal triggering an interrupt service routine (ISR). These correspond to the ISR

watching for a rising edge or falling edge. The relevant sensors are tabulated in Table 1.

> Reflectance Sensor: The reflectance sensor is responsible for distinguishing the four
parts: Aluminium, Steel, White, and Black. It works by shining a light on the part, and
measuring how much light is reflected back. This yields an analog value that must be
translated for the MCU with an ADC.

> Reflectance Detector: The reflectance detector is responsible for signalling when there
is a part in front of the reflectance sensor, signalling for the start and continuation of

ADC conversions. Without the reflectance detector, the MCU would constantly conduct

ADC conversions, slowing the performance of the processor. This sensor yields a logic
high signal that is pulled down when the beam is broken.

> Exit Sensor: The exit sensor signals when a part reaches the end of the belt, and is about
to be ejected into the bucket. This sensor also functions using a beam-break sensor.

> Stepper Homer: The stepper homer defines the home position of the stepper motor. It
functions using a hall effect sensor, detecting the magnetic field induced by a magnet
placed at the home position. This yields an analog signal that trips into logic high as the
magnet passes over the sensor, terminating a while() loop during the stepper homing
process.

> 2x Button: Two buttons are included to allow the operator to pause, as well as ramp

down the system. One button is a pull-up signal, and the other is pulldown.

Table 1: Sensor Types

Sensor Purpose Rising/Falling Edge | Sensor Type
Reflectance Sensor Identify Part Type N/A Photoresistor
Reflectance Detector | Signal when a partis | Falling Edge Beam-Break
present in the
reflectance detector
zone
Exit Sensor Signal when a part Falling Edge Beam-Break
reaches the end of the
belt
Stepper Homer Define the stepper N/A Hall-Eftect
motor home
2x Button Pause / Rampdown Falling / Rising Momentary Switch

2.3 System Algorithm

The system is divided into 6 states, yielding a finite state machine. The polling state implements
a switch statement that responds to changes in STATE, which are enacted by ISRs, or logic in

other states. Within the switch statement a goto statement is used to navigate to the different

states. The full code, including register settings is available in Appendix B. A breakdown of

each stage is shown in Table 2.

Table 2: Six Finite State Machine States

State Purpose
Polling Stage Default state.
Reflective Stage Logic for reading ADC values from Reflective sensor, and categorising

incoming items.

Bucket Stage Logic for mechanically sorting items into relevant bins at the end of the
belt.

Pause Stage Standby State, displays items that have been sorted.

Ramp Stage Transient State initialising conditions to begin system rampdown.

End Stage End State. System enters a safe state and stops all processes.

2.3.1 Polling Stage:

The polling stage is the default state of the system. It continually watches for system changes,
and uses a goto statement within each case, to navigate to each STATE. Additionally, there is a
latent timer embedded in the polling state. If the ramp down has been initialised, it begins

running for an allotted time before navigating to the END state.

POLLING STAGE:
if(ramp down has been initialised)){
Decrement countdown timer, based on clock
if(countdown complete){
Set state to END

}
switch(STATE){

if(state 1) goto POLLING_STAGE
if(state 2) goto PAUSE_STAGE

if(state 3) goto REFLECTIVE_STAGE
if(state 4) goto BUCKET_STAGE
if(state 5) goto RAMP_STAGE
if(state 6) goto END_STAGE

2.3.2 Reflective Stage:

The reflective stage, triggered by the reflectance detector, identifies, categorises, and stores the
incoming items in a FIFO linked list. Dealing with the reflectometer requires management of the
ADC. The ADC runs the conversion in the background. Once the conversion is complete, an ISR
is triggered, the ADC result flag is set to true, and the result is stored in the ADC register. The
reflectance value reaches its minimum at the centre of the part. Because of this, only the
minimum reflectance value is stored. Different item categories have different reflectance values
ranging from 1 to 1024. Calibration is discussed in section 4. If an item has a reflectance within a

certain range, it is organised into that category.

REFLECTIVE STAGE:
if(an ADC reading has been completed){
if(The value is also a new minimum){
Overwrite the last stored value

}

Once complete, make a new ADC conversion request

Once the part is no longer being scanned, examine the minimum
value, and categorise the part

if(category_min < itemVal < category_max){
Assign relevant ID
Increment # of counted parts

2.3.3 Bucket Stage:

The bucket stage is triggered by the end detector. It acknowledges the approaching parts, and
rotates the bucket to allow them to fall into the correct bin. The stepper motor has 200 steps for a
full rotation, corresponding to relative destinations at +50 steps, -50 steps, and +100 steps, with
+/- 100 steps arbitrarily chosen. The system halts while the stepper completes a whole spin cycle,

simplifying the code, but limiting the ability for synchronous sorting and ADC conversions.

BUCKET_STAGE:
Pause the belt
View the item in the linkedList
Determine the destination position (will be A,S,W,B)
Compute the distance from current position to destination

position via CW and CCW rotation

Compare the distance to destination via CW and CCW rotation
Select the shortest distance (will be +50, +100, +150, or -50,
————— 100, -150) decide which direction to turn
rotateStepper(By +50, or -50, or +/-100 steps)

delay(bucketFall) //give enough time for the previous part to
————1and before rotating again

Resume the belt

Remove the item from the queue

-- itemCategoryOnBelt_ count

++sortedItemCategory_count

2.3.4 Pause Stage

The pause stage is entered when the pause button is pressed, calling an ISR that sets the STATE
to pause. The pause state pauses the belt, and displays all the items on the belt, as well as all the

items that have been sorted.

PAUSE_STAGE:
Listen for pause-button-activation via ISR.
debounce()

if(current state is not yet paused){
Pause the belt
Clear the LCD
Display all items on belt
Display all items that have been sorted
}
else if(current state is already paused){
Clear the LCD
Resume the belt

2.3.5 Ramp Stage

The ramp stage is a shutdown sequence that, when pressed, sorts all the remaining items on the
belt before shutting down. The ramp stage is entered when the ramp down button is pressed. The
ramp stage implementation initialises a countdown that runs in the POLLING state, by setting a
ramp down boolean. The countdown is reset every time a new part is scanned, leaving enough
time for the belt to be cleared before shutting down. Because the countdown only runs in the
POLLING state, when the bucket is moving, the countdown is paused. This is a system feature
that helps to ensure that all parts are sorted from the belt before shutting down. Once the
countdown is complete, the system switches to the END state (section 2.3.6). See section 2.3.1

for the countdown timer pseudocode.

RAMP_STAGE:
debounce()
if(ramp down has not yet been initialised){
Set ramp down boolean to true
}
else if(ramp down has already been initialised){
Set ramp down boolean to false

ISR(INT1 vect){ //reflective sensor interrupt
Reset rampdown timer

10

2.3.6 End Stage

The end stage is the final state of the system, entered when the ramp down sequence has been
initialised, and completed, with all the items sorted from the belt. This stage stops the belt,
displays all the sorted items on the LCD, and exits main().

END:
StopTheBelt()
LCDClear()
Display all sorted parts
return O

3 System Performance Specifications

The final results of the system was the successful sorting of 48 parts in 39 seconds with O errors.
Parts were loaded eight at a time. This converts to a system performance index (SPI) of 1.23.

Where SPI is given by:

N —N. _
sp] = N _ 480

= 1.23

The main errors noted during the final demonstration were caused by a calibration nuance
between the end-detector position, and the speed of the belt. On occasion, a part would
prematurely fall off the end of the belt before the stepper was able to bring the correct bucket
into position. This would result in an offset of readings affecting all remaining parts. Other issues
occurred when parts were too spaced out and parts would trip the end detector and reflective
sensor at the same time. As will be discussed in section 5 - Limitations and System Tradeoffs,

the code is not capable of handling this scenario.

3.1 Recommended Operating Parameters

The calibration procedure to determine operating parameters will be discussed in section 4 -

Testing and Calibration Procedures. From these calibration tests, the parameters in Table 3 are

11

recommended to provide constant and reliable sorting operations with an SPI of 1.23. A

definition of each item in Table 3 is listed below.

e Belt speed: The PWM duty cycle supplied to the belt DC motor.

e Counts before ramp down end: The time allocated to complete sorting before shutting

down

e Initial Step Delay: The step delay applied to the first step of the stepper acceleration

curve

e Steady State Step Delay: The step delay applied to the maximum stepper speed

e Number of Acceleration Steps: The number of steps allocated to the acceleration from

initial to max stepper speed

e Number of Deceleration: The number of steps allocated to the deceleration

e Delay From Drop to Stepper: The delay to allow an item to fall before the next sequence

e Stepper Offset Steps: Alignment of the stepper with the belt.

Table 3: Recommended Operating Parameters

Misc. Belt Speed 0xAQ (63% duty)
Counts Before Rampdown End 100
Initial Step Delay [ms] 20
Steady State Step Delay [ms] 6
Number of Acceleration [Steps] 11
Stepper ;
Number of Deceleration [Steps] 6
Delay From Drop to Stepper [ms] 8
Stepper Offset steps 7
Aluminum Min [ADC Value] 1
Aluminum Max [ADC Value] 216
Steel Min [ADC Value] 217
ADC |Steel Max [ADC Value] 735
Ranges [White Min [ADC Value] 736
White Max [ADC Value] 919
Back Min [ADC Value] 920
Black Max [ADC Value] 1024

3.2 Maximum Operating Parameters

Through further testing, faster stepper acceleration profiles and belt speeds were possible as seen

in Table 4.

12

Table 4: Maximum Operating Parameters

Misc. |[Belt Speed 0xCO (75% duty)
Initial Step Delay [ms] 15
Steady State Step Delay [ms] 5
Stepper .
Number of Acceleration [Steps] 8
Number of Deceleration [Steps] 6

Despite the potential for faster sorting operations, these parameters occasionally lead to losing
steps at high loading, and mis-identifying items. As such, they are not recommended for

consistent and reliable sorting.

4 Testing and Calibration Procedures

As discussed in section 3.1 - Recommended Operating Parameters, several tuning factor
variables were created and are listed in Table 3. Physically, the angle of the end detector was

another adjustable variable.

To determine the ideal belt speed, several tests were completed. First, it was determined how fast
the belt could run while still achieving enough ADC readings to read all parts without skipping,
and record accurate reflectivities. Secondly, the speed was varied to ensure parts at the end
detector remained on the belt upon stopping. Through these tests, an ideal belt speed was
determined to be powered by a 63% duty cycle. During the belt speed tests, the ideal end
detector angle was determined as well. This angle was found by creating the largest angle

possible, that still ensured parts would stay on the belt. The final angle is seen below.

13

Figure 4: End Detector Angle

To calibrate the stepper motor acceleration profile, tests were completed with the bucket fully
loaded, and made to complete repeated 180 degree rotations. Variations were first made to the
initial stepper speed to find a value that could move the stepper regardless of loading. The value
determined was a delay of 20ms between steps. Next, variations in the steady state speed, and
number of acceleration and deceleration steps were made in turn. These values were continually
decreased until steps were lost during motion. The results of these tests found an ideal steady
state delay of 6ms between steps, 11 acceleration steps, and 6 deceleration steps. The

acceleration profile is seen below.

14

Motion Profile

20

Delay [ms]
=

=
N
T

Step

Figure 5: Stepper Acceleration Profile

The delay time from part drop to the start of stepper movement was determined through slow
motion video to ensure parts landed in the centre of the bucket before movement began. This
delay was determined to be 8ms. Finally, the angle of the bucket was offset by 7 steps to line up

the off centre end detector with the centre of the bucket.

The number of counts before ramp down completion was determined by the time required for a
part to be read, then sorted. This time will be usable regardless of the number of parts still to be
sorted because the ramp down countdown restarts upon part reading and pauses during part

sorting. The number of counts was determined to be 100.

The final tuning variables set were the ADC recording ranges to distinguish between white,
black, steel, and aluminium parts. These values were determined through a calibration code. The
calibration code runs the belt and saves the minimum and maximum ADC recordings during
operation. Every part of each type was run through the system to find the absolute maximum and
minimum values. Thes ranges were then inflated to meet the next range halfway between them.

The final ranges are seen below.

15

Ranges for A, S, W, B
T T T

L Il 1 1 1 1 1 Il L L
0 100 200 300 400 500 600 700 800 900 1000
ADC Recordings

Figure 6: ADC Ranges

Once fully calibrated, rigorous system testing was completed. The LCD was heavily used during
this process to display objects saved in the que, and objects sorted. This process was essential to
determine if erroneous sorting was the fault of the ADC reading, the stepper positioning, or the
handling of the linked list. Various final testing was completed. Initial tests were aimed to ensure
the code’s logic could handle any possible combination of parts possible and accurately sort.
Later tests ensured the code, stepper motor, and reflective sensor could handle a larger volume of

parts.

5 Limitations and System Tradeoffs

The main limitation of the design is the inability to fully load the belt, which reduces sorting
speed. When the belt is fully loaded, the reflectometer and end detector are triggered while the
stepper is simultaneously rotating. This issue was not pursued in favour of other debugging tasks,
so the exact mechanism of failure is not yet known, and would require further testing. The most
likely cause is the implementation of the bucket stage. When the bucket stage is entered, the

logic enters a loop, and all 50 to 100 steps are made within the loop, never allowing the system

16

to return to the REFLECTIVE STAGE to read and store ADC values. A potential solution
would be to rewrite the system to make a single step after each polling cycle, storing the position
and destination in global variables. This method was attempted early in the project, but was

abandoned in favour of the current method to accelerate progress to a minimum viable product

(MVP).

For the stepper motor acceleration, a trapezoidal curve was used rather than an S-curve, which
several other groups implemented. While the S-curve yields a smoother and more rapid
acceleration, a trapezoid curve was used based on its reliable usage in industrial CNC

applications [2], and to accelerate progress to a MVP.

The accuracy of the system is also dependent on the quality of parts. While the reflectivity of
steel, aluminium, black-plastic, and white-plastic each reside in their own distinct ranges, the
black and white plastics ranges converge, and can intersect if the parts are reasonably scuffed,
which happens over time. This results in missorted black and white parts if the parts are poor

quality.

6 Experience and Recommendations

The overall project experience was positive and the group made steady progress through the term
culminating in a successful design without the need for large last minute efforts. Approximately
four extra hours a week on top of lab time was required to complete the project. Some aspects
that lead to the team's success was a good understanding of the technical manual, proficient use
of LED’s, multimeters, and the LCD for debugging, and a good working relationship with lab
technicians and other groups to provide assistance when stuck. The only recommendation the
team has for the lab structure is to provide a more detailed overview of the wiring and setup
involved in the conveyor apparatus. This would help students appreciate the process required to
create a full mechatronic system as the project focuses mainly on the software side. No further
lab structure recommendations are held, other than the continued conveyance of the importance

of putting in the required time to finish the project without stress.

17

Recommended improvements to the apparatus are related to the bucket's handling of parts.
During testing, it is difficult to keep track of parts as they fall out of the bucket. Potentially a
bucket with deeper walls could alleviate this issue. However, the stepper motor is likely
incapable of moving when full of aluminium and steel parts. If this is the case, an alternative
method could replace the buckets with open hoops that drop parts straight through into a static
basket below. The detriment to this idea is to determine system accuracy, video recording would

be required.

7 Conclusion

The project successfully resulted in the development of a mechatronic sorting system, using the
ATmega2560 microcontroller to efficiently sort objects based on their material and colour.
Demonstrating proficient accuracy, the system accomplished sorting 48 objects within 39
seconds without errors, achieving a System Performance Index (SPI) of 1.23. However, the
project was not without its limitations, notably the occasional sorting inaccuracies due to
calibration issues between the end-detector position and belt speed, and challenges in handling
simultaneous sensor triggering with a fully loaded belt. These areas offer avenues for future
work. The project aligns well with the initially stated objectives, achieving technical efficiency
while also contributing valuable insights into mechatronics and microcontroller applications. For
future projects, it is recommended to focus on enhancing the system's capacity to manage full
loads and to explore alternative motor control algorithms, such as the S-curve for stepper speed,

to potentially improve system efficiency.

18

References

[1] UVic Mech 458, “Final Project presentation”, Dr. Yang Shi, Patrick Chang
[2] UVic Mech 460 Lecture Notes, Dr. Keivan Ahmadi

19

Appendices

A Final System Photo

MEGA 256
L

FE I REREN]

Figure 7: Final System

20

B System Code

//PROJECT CODE TAKE 1
//COLM MOLDER, BLAINE TUBUNGBANUA

//LIBRARIES AND FUNCTIONS AND VARIABLES-- - - - m oo oo o o oo e o oo e e e e e e -
#include <avr/interrupt.h>

#include <avr/io.h>

#include <stddef.h>

#include <stdlib.h>

#include "lcd.h"

#include "myutils.h"

#include "LinkedQueue.h"

void mTimer(int count);

int size(link **h, link **t);

void setup(link **h,link **t);

void initLink(link **newLink);

void enqueue(link **h, link **t, link **nL);
void dequeue(link **h, link **deQueuedLink);
element firstValue(link **h);

void clearQueue(link **h, link **t);

char iskEmpty(link **h);

int size(link **h, link **t);

void FWD();
void REV();
void BRK();
void KILL();

int initStepper(int n);

int stepperCW(int steps);

int stepperCCW(int steps);

int stepIdx = 1; //arbitrarily 1

int stepperMover(int distance, int stepPos, int Nintey_deg_Profile[], int one_eight_deg profile[]);

void dispExit(link **head);

//Material limits
#tdefine Alum_MIN 1
#define Alum_MAX 216
#define Steel MIN 217
#define Steel MAX 735
#define White_MIN 736
#define White_MAX 919
#define Black_MIN 920
#define Black_MAX 1024

// Global Variables

volatile char STATE;

volatile int Presses=0;

volatile unsigned int ADC_result; //8 bits that store ADC result

volatile unsigned int ADC_result_flag; //16 bits that flag when ADC conversion complete
int debounce=0;

int pause=0;

int rampdown;

int bTimerInt;

int bTimer;
int bSubTimer;
int cTimerInt;
int cTimer;
int cSubTimer;

int num_CW=0;//Counted White
int num_SW=0; //Sorted WHite
int num_CB=0;
int num_SB=0;
int num_CS=0;
int num_SS=0;
int num_CA=0;
int num_SA=0;
int num_CT=0;
int num_ST=0;

//START OF MATN- - - = - - = = = = o o o o o o o o o e o o e o o o o e e o e o e e e e

int main(int argc, char *argv[]){
// TUNING FACTORS

int beltSpeed=0xA@; //PWM

int stepperSpeed=6; //Steady-state stepper delay

int stepperAccel=11; //Number of steps allocated to acceleration

int stepperDecel=6; //Number of steps allocated to deceleration
cTimer=100; //Number of counts before rampdown closes
int bucketDelay=38;

// SETTING UP PORTS AND CLOCK AND LCD-- === == - - s oo oo o o o o o oo o oo e o e e e e e e e e oo oo e oo oo oo m o oo mmmmmmomoo
CLKPR = 0x80;
CLKPR = 0x01; // sets system clock to 8MHz
TCCR1B |=_BV(CS11);

InitLCD(LS_BLINK|LS_ULINE); //initiate the LCD
LCDClear();
LCDWriteStringXY(0,0, "Project_V2");

DDRC = OxFF; // just use as a display
DDRL = OXFF; // Green and yellow

DDRB = OXFF; //DC motor

DDRA = OXFF; //Stepper motor

//Hall effects on port HO
//interrupts on port D

//SETTING UP TERTIARY TIMER-= === == mm s e e e e e e e e e e e

TCCR3B|=_BV(CS31); //enables prescale. Do we need this to wake up the timer?

TCCR2A |=_BV(WGM32); //Select CTC

OCR3A = OXFFFF; //Output compare value. Check with documentation for val
TCNT3 = Ox0000; //Define counter value to ©x0000

TIMSK3|=_BV(OCIE3A); //Enable the Ouput Compare Match A interrupt

//SETTING UP THE LINKED LIST === === m oo o e o e oo
link *head; /* The ptr to the head of the queue */
link *tail; /* The ptr to the tail of the queue */

22

link *newlLink; /* A ptr to a link aggregate data type (struct) */

link *rtnLink; /* same as the above */

element eTest; /* A variable to hold the aggregate data type known as element */
rtnLink = NULL;

newLink = NULL;

setup(&head, &tail);

//SET UP PWM

//set PWM mode 3

TCCROA |=_BV(WGM@1); //setting bit WGMO1l to 1 -> sets fast PWM with Top update
TCCROA |=_BV(WGM@®); //setting bit WGMO® to 1 -> to select mode 3

TCCR@B |= _BV(CS@1l); //prescaling the clock

//Set the compare match output mode to clear, on a compare match

//And set the output compare A to 1 when the timer reaches TOP

OCROA = beltSpeed;

TCCROA |= BV(COM@Al); //Clears on compare match, but sets OCOA at bottom

//SETTING UP

Stepper MotorS---------------- oo

stepIdx = initStepper(90);

int
int
int
int
int

//SETTING UP
int
int
int
int
int

int

A = 50; //Double check that 50 = 45degrees
S = 150;

W = 100;

B = 0;

StepPos = @; //New def: Global position of stepper

50 ACCEL

total_steps = 50;

Accel = stepperAccel;
Deccel = stepperDecel;
Start_Delay = 20;
Min_Delay = stepperSpeed;

Steady = total_steps - Accel - Deccel;

float up_slope = (float)(Start_Delay - Min_Delay) / Accel;
float down_slope = (float)(Start_Delay - Min_Delay) / Deccel;

int
int

for

for

for

//Setting UP

Nintey deg Profile[50];
step = 0;

(int i = @; 1 < Accel; ++i) {
Nintey_deg_Profile[step] = Start_Delay - (int)(up_slope * i);
step = step + 1;

(int i = @; i < Steady - 1; ++i) {
Nintey_deg Profile[step] = Min_Delay;
step = step + 1;

(int i = @; i <= Deccel; ++i) {
Nintey_deg_Profile[step] = Min_Delay + (int)(down_slope * i);
step = step + 1;

180 ACCEl

total_steps = 100;

Steady = total_steps - Accel - Deccel;

int

One_Eighty deg_Profile[100];

23

step = 0;

for (int i = @; i < Accel; ++i) {
One_Eighty_deg Profile[step] = Start_Delay - (int)(up_slope * i);
step = step + 1;

for (int i = @; i < Steady - 1; ++i) {
One_Eighty_deg_Profile[step] = Min_Delay;
step = step + 1;

for (int i = @; i <= Deccel; ++i) {
One_Eighty_deg Profile[step] = Min_Delay + (int)(down_slope * i);
step = step + 1;

//SETTING UP ADC and interrupts---------mmommmm oo oo oo e

cli(); // Disables all interrupts

EICRA |= _BV(ISC21); // --> rising egde| _BV(ISC20); //INT2
EICRA |= _BV(ISC31); // --> rising egde| _BV(ISC3@); //INT3
EICRA |= _BV(ISC11) | _Bv(ISC1@); //INT1

EICRA |= _BV(ISCO1); //INTe for rising edge-> | _BV(ISC@®)

// See page 112 - EIFR External Interrupt Flags
EIMSK |= @x@F; //turns on interrupt flags

ADCSRA |= _BV(ADEN); // ADC Control status register - enable ADC
ADCSRA |= _BV(ADIE); // enable interrupt of ADC
ADMUX |= _BV(REFS®@); //removed ADLAR

// Enable all interrupts
sei(); // Note this sets the Global Enable for all interrupts

//START OF LOGIC = - = = = = = = = = & = o o & o o o o .
STATE = ©;
int min_adc=0xfff; //setting the initial lowest reading (a very large number)

mTimer(20);
LCDClear();
REV();

goto POLLING_STAGE;

/] POLLING STATE = - = - - = = o o o o oo o o e o oo oo
POLLING_STAGE:

if(rampdown){

if(cTimerInt){ //If TIFR has been tripped
if(cTimer > 0){
--cTimer;
LCDWriteIntXY (14,1, (cTimer/10),2);
}elseq{
STATE=5;
}
TIFR3|=_BV(OCR3A);
cTimerInt=0;

24

switch(STATE){
case (@) :
PORTL=0b00010000;
goto POLLING_STAGE;
break;
case (1) :
goto PAUSE_STAGE;
break;
case (2) :
PORTL=0b01000000;
goto REFLECTIVE_STAGE;
break;
case (3) :
PORTL=0b01000000;
goto BUCKET_STAGE;
break;
case (4) :
goto RAMP_STAGE;
case (5) :
goto END;
default :
goto POLLING_STAGE;

//Pause State--------- oo
PAUSE_STAGE:

mTimer(20);

if(((PIND&Ox04) ! =0x04)&&pause==0){
BRK();
LCDClear();

LCDWriteStringXY (0,0, "C");
LCDWriteStringXY(@, 1, "S");

LCDWriteStringXY(1,0, "B");
LCDWriteIntXY(2, @, num_CB, 2);
LCDWriteIntXY(2, 1, num_SB,2)
LCDWriteStringXy (4,0, "A");
LCDWriteIntXY(5, @, num_CA, 2);
LCDWriteIntXY(5, 1, num_SA, 2);
LCDWriteStringXY(7,0, "S");
LCDWriteIntXY(8, @, num_CS, 2);
LCDWriteIntXY(8, 1, num_SS, 2);
LCDWriteStringXY(10,0, "W");
LCDWriteIntXY (11, ©, num_CW, 2);
LCDWriteIntXY (11, 1, num_SW, 2);

LCDWriteStringXY(14, ©, "B");
LCDWriteStringXY(15, @, "T");
LCDWriteIntXY (14, 1, num_CT, 2);

pause=1;
}else if(((PIND&Ox04)!=0x04)8&&pause==1){
LCDClear();

25

REV();
pause=0;
STATE=0;

STATE=0;
goto POLLING_STAGE;
J/RAMP STAGE = = = = = = = = = = = = = = & o o o o o o e
RAMP_STAGE:
mTimer(20);
if(((PIND&Ox08) !=0x08)&&rampdown==0){

LCDClear();

rampdown=1;
}else if(((PIND&Ox08)!=0x08)&&rampdown==1){

LCDClear();
LCDWriteStringXY(0,0, "CANCEL RAMPDOWN");
REV();
rampdown=0;
STATE=0;
}
STATE=0;

goto POLLING_STAGE;

//Reflective State----------mm e -
REFLECTIVE_STAGE:
if(ADC_result_flag==1){ //if a reading has been completed and it is a min, set min
if(ADC_result<min_adc){
min_adc=ADC_result;

}
ADCSRA |= _BV(ADSC); //Make an ADC
ADC_result_flag = 0x00; //clear the flag
}
if((PIND&Ox02)==0x02){ //if the reflective sensor is still reading part, stay in state 2

STATE=2;

}else{ //if the part has passed, store the result in a linked list and reset
LCDWriteIntXY(8,0,min_adc,3);
initLink(&newLink);

if(min_adc<=Alum_MAX){
newLink->e.itemCode=1;
LCDWriteStringXY(@,0, "A");
num_CA=num_CA+1;
num_CT=num_CT+1;

}else if(min_adc>Steel MIN && min_adc<=Steel_ MAX){
newLink->e.itemCode=2;
LCDWriteStringXY(0,0, "S");
num_CS=num_CS+1;
num_CT=num_CT+1;

}else if(min_adc>White_MIN && min_adc<=White_MAX){
newLink->e.itemCode=3;
LCDWriteStringXY(0,0, "W");
num_CW=num_CW+1;
num_CT=num_CT+1;

26

}else if(min_adc>Black_MIN){
newLink->e.itemCode=4;
LCDWriteStringXY(0,0, "B");
num_CB=num_CB+1;
num_CT=num_CT+1;

}

if(head==NULL){ //If queue is broken, re-initialize.
setup(&head, &tail);

}

enqueue(&head, &tail, &newlLink);

dispExit(&head);

STATE=0;
min_adc=0xfff;
}
goto POLLING_STAGE;
//Bucket Stage-------- - o e e e e e e e e e e e oo o o

BUCKET_STAGE:
BRK();

int current = StepPos; //get current position
int target = head->e.itemCode; //Assigns target to const int val
int part_ID = target;
if(target == 1){
target=50; //aluminum
}else if(target==2){
target = 150; //steel
}else if(target==3){
target=100; //White
}else if(target==4){
target=0; //black
}
//Determine Distance
int distance = current-target;
if(distance==150){
distance=-50;
}else if(distance==-150){
distance=50;
}
dequeue(&head, &rtnLink);

if(part_ID == 1){
//aluminum
--num_CT;
++num_SA;
}else if(part_ID==2){
//steel
--num_CT;
++num_SS;
}else if(part_ID==3){
//White
--num_CT;
++num_SW;
}else if(part_ID==4){
//black
--num_CT;
++num_SB;

27

mTimer (bucketDelay);
StepPos = stepperMover(distance, StepPos, Nintey_deg Profile, One_Eighty deg_Profile);
REV();

STATE = 0;

goto POLLING_STAGE;

//End State---------mmmm e e e e e e e m e m e e
END:

BRK();

LCDClear();
LCDWriteStringXY(@,1, "END");
LCDWriteStringXY(1,0, "B");
LCDWriteIntXY(2, @, num_CB, 2);
LCDWriteStringXY(4,0, "A");
LCDWriteIntXY(5, @, num_CA, 2);
LCDWriteStringXY(7,0, "S");
LCDWriteIntXY(8, @, num_CS, 2);
LCDWriteStringXY (10,0, "W");
LCDWriteIntXY (11, ©, num_CW, 2);
return(0);

END OF
END OF
END OF
END OF
END OF
END OF
END OF
END OF
END OF
END OF
END OF
END OF

/ISR FUNCTIONS - = = = = = = = = = = = = o o o e o e e e e e e e

ISR(INTO_vect){ //End Detector Interrupt

STATE = 3;

}

ISR(INT1_vect){ //Triggered if reflective sensor is hit
STATE = 2;
ADCSRA |= _BV(ADSC); //Make an ADC

PORTL=0b11111111; //turn on yellow and green lights
cTimer=100; //Reset bTimer if part detected

28

ISR(INT2_vect){//pause functionality
STATE = 1;

ISR(INT3_vect){//pause and finish functionality
STATE = 4;

ISR(ADC_vect){ //Triggered upon and a completed ADC conversion
ADC_result = ADC; //sets the ADC result when conversion complete
ADC_result_flag = 1; //sets the result flag

ISR(TIMER3_COMPA vect){ //Triggered upon secondary timer completion

cTimerInt = 1;

ISR(BADISR_vect)

{
BRK();
KILL();
LCDClear();
LCDWriteStringXY (0,0, "BAD ISR");
}
STEPPER = = = = o = e

//INITIALIZE STEPPER MOTOR
// Input: Number of desired steps to be taken
//Returns: final step position
int initStepper(int n){
//repeat for n cycles
int stepOne = 0b00110000;
int stepTwo = ©b0000O110;
int stepThree = 0b00101000;
int stepFour = 0bo0000101;
int stepDelay = 15;

for(int i=0; i<n; i=i+4){ //n is the desired number of steps
PORTA = stepTwo;
mTimer(stepDelay);
PORTA = stepThree;
mTimer(stepDelay);
PORTA = stepFour;
mTimer(stepDelay);
PORTA = stepOne;
mTimer(stepDelay);

while((PINH&Ox01)==0x01){
stepperCCW(1);

29

stepperCCW(7); //+6 offset to account for end detector offset

return 1; //return the step number

//CW
int stepperCW(int StepPos){
//Define Stepper positions (From table)

int stepOne = 0b00110000;
//int stepOne = ©b00110101;
int stepTwo = ©bo0000110;
//int stepTwo = ©b00111100;
int stepThree = 0b00101000;
//int stepThree = 0b00101110;
int stepFour = 0bo0000101;
//int stepFour = 0b00100111;

switch(stepIdx) {

case 1:
PORTA = stepTwo;
stepIdx = 2;
mTimer(20);
break;

case 2:
PORTA = stepThree;
stepIdx = 3;
mTimer(20);
break;

case 3:
PORTA = stepFour;
stepIdx = 4;
mTimer(20);
break;

case 4:
PORTA = stepOne;
stepIdx = 1;
mTimer(20);
break;

if(StepPos==199){
StepPos=0;
}else{
++StepPos;

return StepPos;

//CCW
int stepperCCW(int StepPos){
//Define Stepper positions (From table)

// © @ EQ L1 L2 E1 L3 L4

int stepOne = 0b00110000;
//int stepOne = @b00©101101;
int stepTwo = ©b00000110;
//int stepTwo = ©b00101110;
int stepThree = 0b00101000;
//int stepThree = 0b00110110;
int stepFour = 0bo0000101;
//int stepFour = 0b00110101;
int stepDelay = 15;

switch(stepIdx) {

case 1:

PORTA = stepFour;
stepIdx = 4;
mTimer(stepDelay);
break;

case 2:

PORTA = stepOne;
stepIdx = 1;

mTimer(stepDelay);
break;

case 3:

PORTA = stepTwo;
stepIdx = 2;
mTimer(stepDelay);
break;

case 4:

PORTA = stepThree;
stepIdx = 3;
mTimer(stepDelay);
break;

if(StepPos==0){
StepPos=199;
}else{
--StepPos;

return StepPos;

int stepperMover(int distance, int stepPos, int Nintey_deg Profile[], int

//int stepOne = ©b00110000;

int stepFour=0b00110110;
//int stepTwo = ©b000LO110;

int stepThree=0b00110101;
//int stepThree = 0b00101000;

int stepTwo=0b00101101;
//int stepFour = 0b00000101;

int stepOne=0b00101110;

if(distance==-50){

stepPos=stepPos+50;
if(stepP0s>199){

one_eighty_deg Profile[]){

31

stepPos=0;

int i=0;
while(i<50){

if(stepIdx==1){
PORTA = stepTwo;
stepIdx = 2;
mTimer(Nintey_deg_Profile[i]);
//mTimer(20);
i++;

}else if(stepIdx==2){

PORTA = stepThree;

stepIdx = 3;

//mTimer(20);
mTimer(Nintey_deg_Profile[i]);
i++;

}else if(stepIdx==3){

PORTA = stepFour;

stepIdx = 4;

//mTimer(20);
mTimer(Nintey_deg Profile[i]);
i++;

Yelse if(stepIdx==4){

PORTA = stepOne;

stepIdx = 1;

//mTimer(20);
mTimer(Nintey_deg Profile[i]);
i++;

}else if (distance==50){

stepPos=stepPos-50;
if(stepPos<0){
stepPos=150;

int i=0;
while(i<50){

if(stepIdx==1){
PORTA = stepFour;
stepIdx = 4;
mTimer(Nintey_deg Profile[i]);
//mTimer(20);
it++;

Yelse if(stepIdx==2){

PORTA = stepOne;

stepIdx = 1;

mTimer(Nintey_deg Profile[i]);
//mTimer(20);

i++;

32

}else if(stepIdx==3){

PORTA = stepTwo;

stepIdx = 2;

mTimer(Nintey_deg Profile[i]);
//mTimer(20);

i++;

}else if(stepIdx==4){

PORTA = stepThree;

stepIdx = 3;

mTimer(Nintey_deg Profile[i]);
//mTimer(20);

it++;

}else if (distance==-100){

stepPos=stepPos+100;
if(stepPos==200){
stepPos=0;
}else if(stepPos==250){
stepPos=50;

int i=0;
while(i<100){

if(stepIdx==1){
PORTA = stepTwo;
stepIdx = 2;

mTimer(one_eighty deg_Profile[i]);

//mTimer(20);
i++;

Yelse if(stepIdx==2){
PORTA = stepThree;
stepIdx = 3;

mTimer(one_eighty deg_Profile[i]);

//mTimer(20);
i++;

}else if(stepIdx==3){
PORTA = stepFour;
stepIdx = 4;

mTimer(one_eighty deg Profile[i]);

//mTimer(20);
i++;

}else if(stepIdx==4){
PORTA = stepOne;
stepIdx = 1;

mTimer(one_eighty_deg_Profile[i]);

//mTimer(20);
i++;

33

}else if (distance==100){

stepPos=stepPos-100;
if(stepPos==-100){
stepPos=100;
}else if(stepPos==-50){
stepPos=150;

int i=0;
while(i<100){

if(stepIdx==1){
PORTA = stepFour;
stepIdx = 4;
mTimer(one_eighty_deg Profile[i]);
//mTimer(20);
i++;

}else if(stepIdx==2){

PORTA = stepOne;

stepIdx = 1;

mTimer(one_eighty deg_Profile[i]);
//mTimer(20);

i++;

}else if(stepIdx==3){

PORTA = stepTwo;

stepIdx = 2;
mTimer(one_eighty deg Profile[i]);
//mTimer(20);

i++;

}else if(stepIdx==4){

PORTA = stepThree;

stepIdx = 3;
mTimer(one_eighty_deg_Profile[i]);
//mTimer(20);

i++;

}

return stepPos;

J/LINKED LIST FUNCTIONS === nomommo i m oo e e o i e e e e acmoemossmcmascsosmsescasacnons

/*
* DESC: initializes the linked queue to 'NULL' status
* INPUT: the head and tail pointers by reference

*/

void setup(link **h,link **t){
h = NULL; / Point the head to NOTHING (NULL) */
t = NULL; / Point the tail to NOTHING (NULL) */
return;

X

/*

34

* DESC: This initializes a link and returns the pointer to the new link or NULL if error
* INPUT: the head and tail pointers by reference

*/
void initLink(link **newLink){
//1link *1;
*newLink = malloc(sizeof(link));
(*newLink)->next = NULL;
return;
}
/*

* DESC: Accepts as input a new link by reference, and assigns the head and tail

* of the queue accordingly

* INPUT: the head and tail pointers, and a pointer to the new link that was created
*/

/* will put an item at the tail of the queue */

void enqueue(link **h, link **t, link **nL){

if (¥t != NULL){

/* Not an empty queue */

(*t)->next = *nL;

*t = *nL; //(*t)->next;

Y/ xifx/

else{
/* It's an empty Queue */
//(*h)->next = *nL;
//should be this

*h = *nL;
*t = *nL;
}/* else */
return;
}
/*

* DESC : Removes the link from the head of the list and assigns it to deQueuedLink
* INPUT: The head and tail pointers, and a ptr 'deQueuedLink'
* which the removed link will be assigned to
*/
/* This will remove the link and element within the link from the head of the queue */
void dequeue(link **h, link **deQueuedLink){
/* ENTER YOUR CODE HERE */
*deQueuedLink = *h; // Will set to NULL if Head points to NULL
/* Ensure it is not an empty queue */
if (*h != NULL){
*h = (*h)->next;
free(*deQueuedLink);
Y/ *ifx/

return;

/*

* DESC: Peeks at the first element in the list

* INPUT: The head pointer

* RETURNS: The element contained within the queue

*/

/* This simply allows you to peek at the head element of the queue and returns a NULL pointer if empty */

element firstValue(link **h){
return((*h)->e);

35

/*

* DESC: deallocates (frees) all the memory consumed by the Queue
* INPUT: the pointers to the head and the tail

*/

/* This clears the queue */

void clearQueue(link **h, link **t){

link *temp;

while (*h != NULL){
temp = *h;
*h=(*h)->next;
free(temp);
}/*while*/

/* Last but not least set the tail to NULL */
*t = NULL;

return;

/*
* DESC: Checks to see whether the queue is empty or not
* INPUT: The head pointer
* RETURNS: 1:if the queue is empty, and @:if the queue is NOT empty
*/
/* Check to see if the queue is empty */
char isEmpty(link **h){
/* ENTER YOUR CODE HERE */
return(*h == NULL);

/*

* DESC: Obtains the number of links in the queue

* INPUT: The head and tail pointer

* RETURNS: An integer with the number of links in the queue
*/

/* returns the size of the queue*/

int size(link **h, link **t){

link *temp; /* will store the link while traversing the queue */
int numElements;

numElements = 0;
temp = *h; /* point to the first item in the list */
while(temp != NULL){

numElements++;

temp = temp->next;

}/*while*/

return(numtElements);
}/*size*/

//DC MOTOR CONTROL FUNCTIONS - = - = = = = = = = = = = = = = = = = = = o o o o o o o o o oo o o oo o oo oo

36

void BRK(){
PORTB = 0b00001111;
mTimer(20);

void FWD(){
PORTB = 0bo0001011;

void REV(){
PORTB

0b0oReR111;

void KILL(){
BRK();
PORTB= 0b00001100;

J/MTIMER = - = = = = = — — £ & & o o oo .
void mTimer(int count){

int i;

i=0;

TCCR1B |=_BV(WGM12);
OCR1A=0x0@3E8;
TCNT1=0x0000;
TIFR1 |= _BV(OCF1A);
while(i<count){
if((TIFR1 & 0x02)==0x02){
TIFR1 |=_BV(OCF1A);

i++;

}

return;

//DISPEXIT: LCD Function for displaying the 1st 2 contents of linkedlist to LCD
void dispExit(link **head){
switch((*head)->e.itemCode) { //Display First Loader

case 1:
LCDWriteStringXY(0,1, "A");
break;

case 2:
LCDWriteStringXY(0,1, "S");
break;

case 3:
LCDWriteStringXY(0,1, "W");
break;

case 4:

LCDWriteStringXY(0,1, "B");
break;

}
if((*head)->next != NULL){ //Print next up if there is one

PORTL=0b11110000;

switch((*head)->next->e.itemCode) { //Display Second Loader

case 1:

case 2:

case 3:

case 4:

LCDWriteStringXY(2,1, "A");
break;

LCDWriteStringXY(2,1, "S");
break;

LCDWriteStringXY(2,1, "W");
break;

LCDWriteStringXY(2,1, "B");
break;

38

	1 Project Introduction
	Figure 1: Mechatronic Sorting System [1]

	2 System Technical Information
	2.1 High Level Function Diagram
	
	Figure 2: Block Diagram

	2.2 Circuit Diagram
	Figure 3: Circuit Diagram
	Table 1: Sensor Types

	​2.3 System Algorithm
	Table 2: Six Finite State Machine States
	2.3.1 Polling Stage:
	2.3.2 Reflective Stage:
	2.3.3 Bucket Stage:
	
	2.3.4 Pause Stage
	2.3.5 Ramp Stage
	2.3.6 End Stage

	3 System Performance Specifications
	3.1 Recommended Operating Parameters
	Table 3: Recommended Operating Parameters

	3.2 Maximum Operating Parameters
	Table 4: Maximum Operating Parameters

	4 Testing and Calibration Procedures
	Figure 4: End Detector Angle
	Figure 5: Stepper Acceleration Profile
	Figure 6: ADC Ranges

	5 Limitations and System Tradeoffs
	6 Experience and Recommendations
	7 Conclusion
	
	References
	
	Appendices
	A Final System Photo
	Figure 7: Final System

	B System Code

